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In a decision diagram, the average path length (APL) is the average number of nodes on a path
from the root node to a terminal node over all assignments of values to variables. Smaller APL
values result in faster evaluation of the function represented by a decision diagram. For some
functions, the APL depends strongly on the variable order. In this paper, we propose an exact
and a heuristic algorithm to determine the variable order that minimizes the APL. Our exact
algorithm uses branch-and-bound. Our heuristic algorithm uses dynamic reordering, where
selected pairs of variables are swapped. This paper also proposes an exact and a heuristic
algorithm to determine the pairs of binary variables that reduce the APL of multi-valued de-
cision diagrams (MDDs) for a 4-valued input 2-valued output function. Experimental results
show that the heuristic algorithm is much faster than the exact one but produces comparable
APLs. Both algorithms yield an improvement over an existing algorithm in both APL and
runtime. Experimental results for 2-valued cases and 4-valued cases are shown.

Keywords: BDD, MDD, average path length (APL), node traversing probability, edge traversing probability, branch-

and-bound, sifting algorithm.

1 INTRODUCTION

Binary decision diagrams (BDDs) [5] and multi-valued decision diagrams (MDDs) [15] are extensively used in logic syn-
thesis [10], logic simulation [1, 13, 17], software synthesis [2, 14], and pass transistor logic (PTL) [3, 29, 30]. These
applications use decision diagrams to evaluate logic functions, and the evaluation time is proportional to the average path
length (APL) in the decision diagram. Therefore, minimization of the APL leads to faster evaluation of the logic function.
Particularly, in logic simulation using decision diagrams [1, 13, 17], minimization of the APL reduces the simulation time
substantially because logic functions are evaluated many times with different test vectors.

Minimization of the APL can also be applied to logic synthesis. A method for functional decomposition [32] uses
BDDs to detect Boolean divisors. The quality of a divisor is measured by the number of don’t-cares it provides for the

1Since this paper is reformatted to A4 size, page numbers differ from original one.
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minimization of the quotient. The don’t-cares are generated by the paths in the BDD that lead to the terminal nodes. The
shorter the paths, the more don’t-care minterms they contain. Therefore, minimizing the APL in BDDs can improve the
quality of decomposition.

In pass transistor logic (PTL) synthesis, the circuits are derived directly from BDDs representing logic functions. In this
case, the longer paths in BDDs cause larger voltage drop and larger delay. This problem can be solved by inserting buffers
in long paths [3]. Minimizing the APL in the BDD can reduce the number of buffers that must be inserted.

In this paper, we propose an exact APL minimization algorithm based on the branch-and-bound algorithm. This algo-
rithm finds an optimum variable order much faster than exhaustive search, which enumerates all possible variable orders.
However, the exact method is time-consuming for functions with many inputs. To minimize the APL of such functions in a
reasonable time, we propose a heuristic algorithm based on dynamic variable reordering.

This paper is organized as follow. Section 2 contains the necessary terminology and definitions. Section 3 introduces
lower bounds on the APL. Section 4 proposes an exact and a heuristic minimization algorithm for the APL. Section 5 con-
siders the paired ordering of binary variables. Section 6 shows the efficiency of the algorithms using benchmark functions.
Experimental results for 2-valued cases and 4-valued cases are shown. The Appendix includes the proofs of theorems.

2 PRELIMINARIES

We assume that the reader is familiar with the basic terminology of reduced ordered binary decision diagrams (ROBDDs) [5]
and reduced ordered multi-valued decision diagrams (ROMDDs) [15]. In the following, a BDD and an MDD mean an
ROBDD and an ROMDD. DD means either BDD or MDD.

Definition 2.1 Let x be an r-valued variable, and let c ∈ {0,1, . . . ,r−1}. Then, P(x = c) denotes the probability that x has
value c.

Definition 2.2 In a DD, a sequence of edges and non-terminal nodes leading from the root node to a terminal node is a
path. The number of edges in the path is the path length.

Note that the sequence of edges in a path pi of a DD corresponds to an assignment of values ai to the specific variables
associated with those edges in the DD. We say that such an assignment ai selects path pi. Similarly, if an assignment of
values ci to all variables agrees with ai for all variables assigned in ai, we also say ci selects path pi.

Definition 2.3 In a DD for an n-variable function, the path probability of a path pi, denoted by PP(pi), is the probability
that the path pi is selected in all assignments of values to the r-valued variables. PP(pi) is given by

PP(pi) = ∑
~c∈Ci

P(x1 = c1)×P(x2 = c2)× . . .×P(xn = cn),

where Ci denotes a set of assignments of values to the variables selecting the path pi, ~c = (c1,c2, . . . ,cn), each c j ∈
{0,1, . . . ,r−1}, and P(x j = c j) is the probability x j has value c j.

Definition 2.4 The average path length, or APL, in a DD is given by:

APL =
N

∑
i=1

PP(pi)× li,

where i indexes the paths, N denotes the number of paths, and li denotes the path length of path pi.

Definition 2.5 The node traversing probability of a node v, denoted by NT P(v), is the probability that an assignment of
values to the variables selects a path that includes the node v.

Definition 2.6 The edge traversing probability of an edge e, denoted by ET P(e), is the probability that an assignment of
values to the variables selects a path that includes the edge e.

Note that the node traversing probability of the root node in a decision diagram is 1.0, since all paths start from the root
node.
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Path pi PP(pi) Path length li
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p6 0.0625 4
p7 0.0625 4
p8 0.0625 4
p9 0.0625 4
p10 0.125 3

(b) PPs and path lengths

Figure 1: Example of node traversing probability in a BDD.

Lemma 2.1 [27] The node traversing probability of node v is the sum of the edge traversing probabilities of all incoming
edges to v. Also, the node traversing probability of node v is the sum of the edge traversing probabilities of all outgoing
edges from v.

Proof. See Appendix.

From Lemma 2.1, the following relation holds:

ET P(e) = P(x = c)×NTP(v),

where P(x = c) is the probability x has a value c, v is a node representing a variable x, and e is an outgoing edge correspond-
ing to the value c of v.

Theorem 2.1 [27] The APL is equal to the sum of the edge traversing probabilities of all edges. Also, the APL is equal to
the sum of the node traversing probabilities of all the non-terminal nodes.

Proof. See Appendix.

From Theorem 2.1, we have the following:

APL =
Ne

∑
i=1

ET P(ei) =
Nv

∑
j=1

NT P(v j),

where Ne and Nv denote the number of edges and non-terminal nodes, respectively.

Example 2.1 Consider the BDD in Fig. 1(a), where solid lines and dotted lines denote 1-edges and 0-edges, respectively.
For simplicity, assume that P(xi = 0) = P(xi = 1) = 0.50 (i = 1,2,3,4). This BDD has 10 different paths: path p1 is
(v1,e1,v2,e3), path p2 is (v1,e1,v2,e4,v4,e7), . . ., and path p10 is (v1,e2,v3,e5,v5,e10). The PP(pi) and path length of each
path pi are listed in Fig. 1(b). Therefore, by Definition 2.4,

APL =
10

∑
i=1

PP(pi)× li = 3.125.

By using node traversing probabilities, we can compute this APL as follows: First, we have NT P(v1) = 1.00 for root node
v1. Then, NT P(v2) = ET P(e1) = P(x1 = 0)×NTP(v1) = 0.50 and NT P(v3) = ET P(e2) = P(x1 = 1)×NTP(v1) = 0.50.
Similarly,

NT P(v4) = P(x2 = 1)×NTP(v2)+P(x2 = 0)×NTP(v3) = 0.50,

NT P(v5) = P(x2 = 1)×NTP(v3) = 0.25, and

NT P(v6) = P(x3 = 1)×NTP(v4)+P(x3 = 0)×NTP(v5) = 0.375.
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Figure 2: Partition of MDD.

Thus, we obtain

APL =
6

∑
i=1

NT P(vi) = 3.125.

Similarly, we can compute the APL using the edge traversing probabilities. (End of Example)

Consider a multiple-output function F = ( f0, f1, . . . , fm−1): Rn → Rm, where R = {0,1, . . . ,r − 1}, and n and m denote
the number of input and output variables, respectively. In this paper, we use shared MDDs (SMDDs) to represent multiple-
output function F . For reasons that will be clear later, we view the APL of an SMDD as the sum of the APLs of the
individual MDDs for each component function fi.

3 LOWER BOUNDS ON APL

In this section, we derive lower bounds on the APL. Such bounds are used to reduce the computation time in the algorithm,
as discussed later.

Definition 3.1 Suppose an MDD is partitioned into two parts as shown in Fig. 2. Here, Xupper denotes the variables above
or in level i, Xlower denotes the variables below or in level i + 1, and Cut(i) denotes a set of edges connecting the nodes
above or in level i with the nodes below or in level i+1.

Note that the nodes are indexed by i starting with the root node at level 1. The nodes just below have i = 2, etc..

Definition 3.2 ETP(Cut(i)) denotes the sum of edge traversing probabilities of edges in Cut(i), and is given by

ET P(Cut(i)) = ∑
e∈Cut(i)

ET P(e).

Lemma 3.1 Suppose an SMDD represents a multiple-output function F = ( f0, f1, . . . , fm−1). Then,

ETP(Cut(i)) = mU ,

where mU is the number of the root nodes of the multiple-output function F above or in level i.

Proof. See Appendix.

Corollary 3.1 Suppose an MDD represents a single-output function f . Then,

ET P(Cut(i)) = 1.0.

Lemma 3.2 Let
Cut ′(i) = {e | e ∈Cut(i), such that e is incident to only non-terminal nodes}.

Then, for every permutation of Xupper,
ETP(Cut ′(i)) = ci,

where ci ≤ mU .
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Proof. See Appendix.

Theorem 3.1 Consider an SMDD for multiple-output function F. Let L be the sum of the node traversing probabilities of
the non-terminal nodes below or in level i+1. Let mL be the number of root nodes for F below or in level i+1. Then, for
any permutation of Xlower and any permutation of Xupper,

ET P(Cut ′(i))+mL ≤ L.

Proof. See Appendix.

Theorem 3.2 Consider an SMDD for multiple-output function F. Let U be the sum of the node traversing probabilities of
the non-terminal nodes above or in level i. When the order of Xupper is fixed,

U +ETP(Cut ′(i))+mL ≤ APL.

Proof. See Appendix.

Corollary 3.2 Consider an SMDD of multiple-output function F. Let U and L be the sums of the node traversing probabil-
ities of the non-terminal nodes above and below or in level i, respectively. Then

max{L,U} ≤ APL.

4 MINIMIZATION OF APL

Since the APL in a DD (BDD or MDD) depends on the variable order, the APL minimization problem can be formulated
as follows:

Problem 4.1 Given a DD for a logic function f , find a variable order that produces the minimum APL.

4.1 Change of the APL during Swapping Two Adjacent Variables

Our APL minimization algorithms go from one variable order to another variable order by a sequence of steps that swap
pairs of adjacent variables. A part of the algorithms that has a significant effect on computation time is updating the APL
after swapping each pair of adjacent variables. This section describes a fast method to update the APL after the swap of two
adjacent variables.

Theorem 4.1 Let U be the sum of the node traversing probabilities of non-terminal nodes above or in level i−1, and let L
be the sum of the node traversing probabilities of non-terminal nodes below or in level i+2. Then, after the variable swap
of level i with level i+1, U and L remain unchanged.

Proof. See Appendix.

Theorem 4.1 shows that the previously computed node traversing probabilities need not be repeated in computing the
new APL caused by the swap of two adjacent variables. Fig. 3 illustrates a subgraph of level i and level i + 1 in the BDD
when two adjacent variables are interchanged. Since the principles of variable swap for the binary case and the multi-valued
case are the same, we describe only the binary case. The details of variable swaps for the multi-valued case are discussed in
[18]. A subgraph composed of BDD nodes involved in the variable swap belongs to one of the six classes shown in Fig. 3.
For each class, the figure on the left occurs before the swap, while the figure on the right occurs as a result of the swap.
In Fig. 3, only cases (e) and (f) do not change the APL, while other cases change the APL. For example, in case (a), the
node traversing probabilities of nodes v2 and v3 are changed as a result of the swap. Before the swap, the node traversing
probabilities of v2 and v3 are given by:

NT P(v2) = ET P(e0) = P(xi = 0)×NTP(v1)

NT P(v3) = ET P(e1) = P(xi = 1)×NTP(v1),

where e0 and e1 denote the edges from v1 to v2 and from v1 to v3, respectively. On the other hand, after the swap, the node
traversing probabilities of v2 and v3 are:

NT P(v2) = P(xi+1 = 0)×NTP(v1)

NT P(v3) = P(xi+1 = 1)×NTP(v1).
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Figure 3: Six cases of exchanging two adjacent variables.

When P(xi = 0) = P(xi+1 = 0) and P(xi = 1) = P(xi+1 = 1), the node traversing probabilities of v2 and v3 do not change
after the swap. Therefore, in case (a), the APL is changed by the edge traversing probabilities of outgoing edges from v1.
Similarly, in other cases except for (e) and (f), the APL is changed by the edge traversing probabilities of outgoing edges
from the root node of a subgraph. Note that from Theorem 4.1, we consider only the edges from the root node to nodes in
level i+1 to update the APL.

We summarize the strategy for updating the APL as follows:

1. Before the swap, for each subgraph involved in the swap, the edge traversing probabilities of the edges from the root
node of a subgraph to nodes in level i+1 are subtracted from 1) the APL and from 2) the node traversing probabilities
of nodes in level i+1.

2. After the swap, for each subgraph, the edge traversing probabilities of edges from the root node of a subgraph to
nodes in level i+1 are re-calculated.

3. The calculated edge traversing probabilities are added to 1) the APL and to 2) the node traversing probabilities of
nodes in level i+1.

Example 4.1 Fig. 4 shows BDDs for logic function f = x1x4 ∨ x2x4 ∨ x3. Fig. 4(a) shows the BDD with the variable order
(x1,x2,x3,x4), top to bottom. For simplicity, assume that P(xi = 0) = P(xi = 1) = 0.50 (i = 1,2,3,4). Then, the APL of the
BDD in Fig. 4(a) is 2.875. In this BDD, we consider the swap of variables x2 and x3. During such a swap, case (b) applies
to node v2 and case (f) applies to node v4. Performing the swap leads to the BDD shown in Fig. 4(b). Note that the swap
decreases the APL by 0.25 because the node v4 after the swap does not have the incoming edge from node v2. The node
traversing probabilities associated with nodes v2 and v3 do not change. The overall APL decreases from 2.875 to 2.625.

(End of Example)

Example 4.2 Fig. 5(a) shows the BDD with the variable order (x2,x3,x1) for logic function f = x1(x2 ∨ x3). Assume that

P(x1 = 0) = 0.6, P(x1 = 1) = 0.4,

P(x2 = 0) = 0.3, P(x2 = 1) = 0.7,

P(x3 = 0) = 0.8, P(x3 = 1) = 0.2.

The APL of the BDD in Fig. 5(a) is 2.06. For the swap of variables x3 and x1, case (d) applies to node v2 and case (f)
applies to node v3. Performing this swap yields the BDD shown in Fig. 5(b). It changes the node traversing probabilities of
v3 and v4 (a new node). Before the swap, the edge traversing probability of edge from v2 to v3, 0.06, is subtracted from the
APL and from the node traversing probabilities of v3. After the swap, the edge traversing probability of edge from v2 to v4,
0.12, is added to the APL and to v4. The overall APL increases from 2.06 to 2.12. (End of Example)
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Figure 4: Example of the update of the APL
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Figure 5: Another example of the update of the APL

4.2 Symmetric Variables

Definition 4.1 A logic function f (x1,x2, . . . ,xi, . . . ,x j, . . . ,xn) is symmetric with respect to xi and x j if the interchange of
xi and x j does not change f . xi and x j are called symmetric variables.

In a DD, swapping symmetric variables xi and x j does not change the graph structure.

Definition 4.2 Let π1 and π2 be permutations of the variables. If the positions of variables in π1 are the same as in π2

except for symmetric variables, π1 and π2 are called symmetric orders.

Since symmetric orders produce DDs with the same graph structure, the DDs have the same APL when P(xi = 0) =
P(x j = 0), P(xi = 1) = P(x j = 1), . . ., and P(xi = r− 1) = P(x j = r− 1) for symmetric variables xi and x j. Therefore, in
such a case, detection of symmetric orders can reduce the computation time for an APL minimization algorithm.

Example 4.3 Consider the logic function f = x1x4 ∨x2x4 ∨x3 (Fig. 4). Let variable orders π1 and π2 be (x1,x2,x3,x4) and
(x2,x1,x3,x4), respectively. Since x1 and x2 are symmetric variables, π1 and π2 are symmetric orders. The BDDs for the two
orders are the same except the labels x1 and x2 are interchanged, and have the same APL and the same number of nodes.

(End of Example)
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1: minimize APL (DD, input variables X , # inputs n) {
2: Xsub = φ ;
3: cost[Xsub] = 0 ;
4: order[Xsub] = φ ;
5: Snext = {Xsub} ;
6: min apl = APL for initial DD ;
7: for (level = 1; level ≤ n; level++) {
8: Scur = Snext ;
9: Snext = φ ;

10: for (each Xsub ∈ Scur) {
11: ordering(DD, order[Xsub], level - 1) ;
12: for (each xi ∈ {X \Xsub}) {
13: X ′

sub = Xsub∪{xi} ;
14: Move xi to level ;
15: symmetry check(DD, level) ;
16: if (order[X ′

sub] and current order are symmetric && all P(x = c)s are same)
17: continue ;
18: Update min apl ;
19: if (lower bound(level) > min apl)
20: continue ;
21: new cost = cost[Xsub] + NT P(level) ;
22: if (new cost < cost[X ′

sub]) {
23: cost[X ′

sub] = new cost ;
24: order[X ′

sub] = current order ;
25: if (X ′

sub /∈ Snext)
26: Snext = Snext ∪{X ′

sub} ;
27: }
28: }
29: }
30: }
31: ordering(DD, order[X ], n) ;
32: }

Figure 6: Exact APL minimization algorithm.

4.3 Exact Minimization Algorithm

Fig. 6 shows a pseudo-code to solve Problem 4.1. This algorithm finds an optimum solution using a branch-and-bound
method, similar to the top-down algorithm (JANUS) in [9]. JANUS [9] uses the number of nodes in a BDD as the cost
function, while our algorithm uses the APL of a DD (BDD or MDD) as the cost function. By using the node traversing
probability (NTP), the changes in APL can be calculated at each node locally. This locality of computation allows a top-
down algorithm. To our knowledge, this is the first time an APL minimization algorithm based on branch-and-bound has
been proposed. This algorithm finds an optimum variable order much faster than the exhaustive search method, which
enumerates all possible variable orders. In lines 11 and 31 of Fig. 6, procedure ordering changes the variable order of the
DD into the given order from the top to the specified level. For example, let the current variable order be (x1,x2,x3,x4,x5).
We seek the order (x5,x4) at level two. That is, we seek (x5,x4,∗,∗,∗), where “∗,∗,∗” represents x1, x2, and x3 in some order.
Then, procedure ordering(DD, (x5,x4), 2) obtains the order (x5,x4,x1,x2,x3) in 7 swaps from the order (x1,x2,x3,x4,x5).
Procedure symmetry check in line 15 checks symmetry of adjacent variables [22]. When the variable order of X ′

sub, which
has already been stored in array “order[X ′

sub]” as a candidate, and the current variable order of the DD are symmetric, and
all P(x = c)s are same for the symmetric variables, the current order is excluded from the set of candidates. In line 19,
Theorem 3.2 is used to eliminate the unneeded variable exchanges to reduce computation time. In line 21, NT P(level)
denotes the sum of the node traversing probabilities of the nodes on the given level (level). The initial values of array cost
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1: sifting APL (DD, #rounds of sifting R) {
2: cost = APL for initial DD ;
3: for (r = 0; r < R; r++) {
4: for (each xi ∈ X) {
5: start = current position of xi ;
6: best p = start ;
7: for (each position p from start to the closer extreme) {
8: Move xi to p ;
9: Update U (or L) ;

10: if (cost ≤ U (or L))
11: break ;
12: if (APL < cost) {
13: cost = APL ;
14: best p = p ;
15: }
16: }
17: for (each position p to the other extreme) {
18: Move xi to p ;
19: Update U (or L) ;
20: if (cost ≤ U (or L))
21: break ;
22: if (APL < cost) {
23: cost = APL ;
24: best p = p ;
25: }
26: }
27: Move xi to best p ;
28: }
29: }
30: }

Figure 7: Heuristic APL minimization algorithm.

in Fig. 6 are set to infinity.

4.4 Heuristic Minimization Algorithm

The exact minimization algorithm in Fig. 6 obtains an optimum solution for Problem 4.1. However, when the number of
input variables is large, finding the optimum variable order may require much computation time.

In this section, we show a heuristic minimization method using variable sifting [23]. The sifting algorithm repeatedly
performs the following basic steps:

1. Change the variable order.

2. Compute a cost.

The proposed sifting algorithm uses APL as the cost function. It was shown in Section 4.1 that the APL can be efficiently
updated after the swap of two adjacent variables. As a result, the time needed to compute the cost in our sifting algorithm
is comparable to the time needed to update the number of nodes in the classical sifting algorithm, which minimizes the
number of nodes. Fig. 7 shows the pseudo-code of the heuristic minimization algorithm. In this algorithm, each variable xi

is sifted across all possible positions to determine its best position. First, xi is sifted in one direction to the closer extreme
(top or bottom). Then, xi is sifted in the opposite direction to the other extreme. In lines 10 and 20 of Fig. 7, Corollary 3.2
is used to eliminate unneeded sifting of xi. When variable xi moves down to the bottom, we use U equal to the sum of the
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node traversing probabilities of the nodes above xi. If cost ≤ U , sifting of xi further down to the bottom cannot lead to a
smaller APL than cost. In such cases, there is no need to continue sifting to the bottom. Similarly, when variable xi moves
up to the top, we use L equal to the sum of the node traversing probabilities of the nodes below xi. This lower bound for the
APL is similar to the one introduced for the number of nodes during the classical sifting [8].

4.5 Initial Ordering of the Binary Variables

The initial ordering of variables influences the effectiveness of the heuristic minimization algorithm described in the previous
section. An analysis of variable orders that produces the minimal APL in several known classes of functions [6, 28] leads to
a heuristic to find a good initial variable order. In this section, we propose an initial variable order using Walsh spectrum [12]
for binary logic functions.

The value of a first-order Walsh spectral coefficient expresses the correlation between the variable value with the function
value. For n-variable logic function f (X), the first-order Walsh spectral coefficient can be computed as follows [7]:

Ri =
|x̄i ⊕ f |

2n−1 −1,

where |x̄i ⊕ f | denotes the number of assignments of values to the variables X such that the values of xi and f (X) are equal.
The initial variable order is found by placing the variables in descending order of the absolute value of Ri. For variables
with identical absolute values of Ri, we arbitrarily choose the order.

All spectral coefficients can be computed by scanning the nodes beginning at the root node and ending on the terminal
nodes using a fast algorithm [31]. The first-order coefficients can be computed by a simplified version of the general
algorithm.

Example 4.4 Consider the logic function f = x1x4 ∨ x2x4 ∨ x3 in Example 4.1. For each binary variable xi, the value of
|x̄i ⊕ f | is given by:

|x̄1 ⊕ f | = 9, |x̄2 ⊕ f | = 9, |x̄3 ⊕ f | = 13, |x̄4 ⊕ f | = 11.

The value of each Ri corresponding to xi is as follows:

R1 =
1
8
, R2 =

1
8
, R3 =

5
8
, R4 =

3
8
.

Therefore, we have an initial variable order x3,x4,x1,x2, and APL = 1.875. This is the minimum APL for f . (End of Example)

5 PAIRED ORDERING OF BINARY VARIABLES

Unfortunately, there are no standard benchmark functions for multi-valued logic. Thus, 4-valued input 2-valued output
functions obtained by pairing binary variables of 2-valued benchmark functions are often used for experiments for the
multi-valued case [11, 18, 24]. Especially, [11, 24] show that 4-valued MDDs can represent binary logic functions more
compactly than BDDs, by considering paired orderings of binary variables. 4-valued MDDs can be implemented efficiently
using LUT-based FPGAs. In Section 6.2, we also use the 4-valued input 2-valued output functions for experiments of the
multi-valued case, and show that 4-valued MDDs can reduce the APL, as well as the number of nodes efficiently. To do
this, in this section, we define a paired ordering of binary variables.

Definition 5.1 Let f (X) be a 2-valued logic function, where X = (x1,x2, . . . ,xn) is an ordered set of binary variables.
Let {X} denote the unordered set of variables in X. Let Xi ⊆ X. If {X} = {X1}∪ {X2} ∪ . . .∪ {Xu}, {Xi}∩ {X j} = φ
(i 6= j), and |Xi| = 2, then (X1,X2, . . . ,Xu) is a paired ordering of binary variables X, and each Xi can be represented
as a 4-valued variable. And then, a 2-valued logic function f (X) can be represented by the mapping f (X1,X2, . . . ,Xu):
{0,1,2,3}u → {0,1}.

For n-variable functions, if n < 2u (i.e. n is an odd number), we use an additional redundant binary variable called a
dummy variable. The set of binary variables with the dummy variable if it exists, is denoted by {X ′}= {x1,x2, . . . ,xn,xn+1},
where |X ′| = n+1 = 2u. Note that f is independent of xn+1.
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Theorem 5.1 The number of different paired orderings of binary variables X = (x1,x2, . . . ,xn) to consider is

n!
2u ,

where u denotes the number of 4-valued variables obtained by the pairing, and is given by

u =
n
2
.

Note that we assume that n = 2u.2

Proof. See Appendix.

In [11, 24], heuristic paired ordering algorithms for node minimization have been proposed. However, in this paper, we
consider the paired ordering algorithms for APL minimization. We formulate the APL minimization problem considering
the paired orderings of binary variables as follows:

Problem 5.1 Given a binary logic function f (X), find a paired ordering of binary variables X that produces an MDD with
the minimum APL.

5.1 Exact Paired Ordering Algorithm

Fig. 8 shows a pseudo-code to solve Problem 5.1. This algorithm finds an optimum solution for Problem 5.1 using branch-
and-bound, similar to the algorithm in Fig. 6. In lines 6 and 38 of Fig. 8, procedure pairing produces an MDD for 4-valued
input 2-valued output function by making pairs of binary variables from the given variable order. In line 7, min apl is
set to the APL of MDD obtained by making pairs of binary variables from the variable order of given BDD. In line 26,
pairing NT P(level) denotes the sum of the node traversing probabilities of the MDD nodes obtained by pairing binary
variables in level and level + 1.

5.2 Heuristic Paired Ordering Algorithm

In this section, we show a heuristic paired ordering algorithm. The heuristic paired ordering algorithm, called pair-sifting
algorithm, consists of the following four basic steps:

1. Apply the sifting algorithm for APL minimization presented in Section 4.4 to the BDD of the given binary logic
function.

2. Make pairs of binary variables from the variable order obtained by the sifting algorithm.

3. Construct an MDD for the 4-valued input 2-valued output function.

4. Apply the sifting algorithm to the MDD.

This strategy is similar to one used in [24], which minimizes the number of nodes in an MDD.

6 EXPERIMENTAL RESULTS

Experiments using MCNC benchmarks were conducted in the following environment:

• CPU: Pentium4 Xeon 2.8GHz

• L1 Cache: 32KB

• L2 Cache: 512KB

• Main Memory: 4GB

• Operating System: redhat (Linux 7.3)

• C-Compiler: gcc -O2

In this section, we assume that P(xi = 0) = P(xi = 1) = . . . = P(xi = r−1) = 1
r for r-valued input functions.

2When n is an odd number, we use a dummy variable.
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1: pairing APL (BDD, binary variables X , # inputs n) {
2: Xsub = φ ;
3: cost[Xsub] = 0 ;
4: order[Xsub] = φ ;
5: Snext = {Xsub} ;
6: pairing(X , order[X ]) ;
7: min apl = APL for initial MDD obtained by pairing ;
8: for (level = 1; level ≤ n; level+= 2) {
9: Scur = Snext ;

10: Snext = φ ;
11: for (each Xsub ∈ Scur) {
12: ordering(BDD, order[Xsub], level - 1) ;
13: for (each xi ∈ {X \Xsub}) {
14: X ′

sub = Xsub ∪{xi} ;
15: Move xi to level ;
16: symmetry check(BDD, level) ;
17: for (each x j ∈ {X \X ′

sub}) {
18: X ′′

sub = X ′
sub ∪{x j} ;

19: Move x j to level + 1 ;
20: symmetry check(BDD, level + 1) ;
21: if (order[X ′′

sub] and current order are symmetric && all P(x = c)s are same)
22: continue ;
23: Update min apl ;
24: if (lower bound(level + 1) > min apl)
25: continue ;
26: new cost = cost[Xsub] + pairing NTP(level) ;
27: if (new cost < cost[X ′′

sub]) {
28: cost[X ′′

sub] = new cost ;
29: order[X ′′

sub] = current order ;
30: if (X ′′

sub /∈ Snext )
31: Snext = Snext ∪{X ′′

sub} ;
32: }
33: }
34: }
35: }
36: }
37: ordering(BDD, order[X ], n) ;
38: pairing(X , order[X ]) ;
39: }

Figure 8: Exact paired ordering algorithm for APL minimization.

6.1 Binary Case

Table 1 compares the number of nodes and APL of BDDs optimized using four different methods: (a) exact minimization of
the number of nodes; (b) exact minimization of the APL; (c) the algorithm in [16]; and (d) the heuristic APL minimization
algorithm presented in this paper. In the table, Name lists the names of benchmark functions. In and Out lists the numbers
of input variables and single-output functions, respectively. Columns Nodes contain the number of non-terminal nodes.
Columns Time contain the CPU time of three algorithms coded by us, in seconds. Unfortunately, the CPU time of the
algorithm in [16] is unavailable. Columns “(a) Min Nodes”, “(b) Min APL”, “(c) Liu [16]”, and “(d) sifting” show the exact
nodes minimization algorithm in [9], the exact APL minimization algorithm in Section 4.3, the heuristic APL minimization
in [16], and the heuristic APL minimization in Section 4.4, respectively. Initial variable order for “(d) sifting” was obtained
using Walsh spectrum described in Section 4.5. The BDDs in this table use complemented edges. Table 1 includes the
same benchmark functions as the experiment in [16] except for incompletely specified functions. We omitted incompletely
specified functions because the number of nodes and the APL in BDDs for incompletely specified functions depend on the
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Table 1: Minimization of APL for individual BDDs

Name In Out (a) Min Nodes (b) Min APL (c) Liu [16] (d) sifting
Nodes APL Time Nodes APL Time Nodes APL Nodes APL Time

5xp1 7 10 66 34.13 0.01 81 31.28 0.01 91 31.31 79 31.28 0.01
alu4 14 8 448 41.75 22.76 547 39.69 28.71 899 47.54 516 39.97 0.01
b12 15 9 64 23.86 0.03 68 21.84 0.01 81 22.22 71 21.88 0.01
con1 7 2 14 6.06 0.01 16 5.94 0.01 16 6.06 16 5.94 0.01
cordic 23 2 73 13.74 416.57 89 9.43 1006.08 259 11.82 88 9.47 0.01
sao2 10 4 99 10.90 0.26 116 10.59 0.06 128 10.71 121 10.59 0.01
vg2 25 8 202 31.00 6431.83 222 29.91 376.78 230 30.37 204 30.16 0.01
misex1 8 7 54 23.22 0.01 57 21.97 0.02 68 22.16 64 21.97 0.01
cm150a 21 1 32 3.50 1106.23 32 3.50 1510.58 33 3.50 32 3.50 0.01
cm151a 12 2 32 6.00 0.38 32 6.00 0.28 36 6.50 32 6.00 0.01
cm162a 14 5 41 11.76 0.06 52 11.70 0.05 59 11.70 48 11.71 0.01
cm163a 16 5 35 11.70 0.01 38 11.70 0.01 42 11.70 36 11.70 0.01
cm85a 11 3 38 7.72 0.05 38 7.72 0.01 47 8.28 38 7.72 0.01
mux 21 1 32 3.50 1098.72 32 3.50 1410.57 33 3.50 32 3.50 0.01
z4ml 7 4 28 18.25 0.01 30 16.38 0.02 32 17.13 28 16.38 0.01
f51m 8 8 51 28.08 0.01 65 27.33 0.02 76 27.45 64 27.45 0.01
pcle 19 9 79 22.50 0.11 84 22.50 0.03 89 22.50 79 22.50 0.01
Average of ratios 1.00 1.00 1.00 1.12 0.95 0.93 1.40 0.99 1.10 0.95 0.40



45
0

N
A

G
A

Y
A

M
A

,e
ta

l.

Table 2: Minimization of APL for shared BDDs for larger functions

Name In Out classical sifting Coef. Without Walsh spectrum With Walsh spectrum
Nodes APL Time Nodes APL Time Nodes APL Time

C432 36 7 1063 86.58 0.01 1081 86.24 0.15 1899 82.09 0.83
C499 41 32 25873 782.66 0.02 32105 641.16 7.12 32105 641.16 7.11
C880 60 26 4122 140.42 0.01 41701 123.85 4.48 91767 122.22 52.12
C1908 33 25 5532 254.65 0.01 16634 179.20 0.96 13868 171.96 2.73
C2670 233 140 1882 303.34 0.05 2755 278.17 1.30 * * *
C3540 50 22 24231 209.15 0.10 25162 208.44 7.44 56898 212.73 75.21
C5315 178 123 1728 460.78 0.05 1820 446.26 0.26 * * *
C7552 207 108 2212 485.03 0.05 2207 471.54 0.87 * * *
apex3 54 50 931 188.58 0.01 900 158.82 0.04 905 158.73 0.03
apex7 49 37 242 113.88 0.01 277 82.44 0.01 280 82.45 0.02
b9 41 21 108 61.16 0.01 131 55.25 0.01 129 55.39 0.01
dalu 75 16 688 102.67 0.01 990 78.81 0.08 1069 78.81 35.31
des 256 245 3297 1209.50 0.18 3343 1081.13 0.47 3886 1077.63 2.15
duke2 22 29 360 87.89 0.01 386 77.52 0.01 392 77.52 0.02
e64 65 65 128 128.00 0.01 128 128.00 0.01 573 128.00 0.05
ex4 128 28 497 51.38 0.01 629 47.26 0.02 630 47.26 0.03
frg2 143 139 1379 607.00 0.04 1580 322.89 0.15 2189 321.75 0.23
k2 45 45 1257 181.80 0.01 1426 177.52 0.07 1418 177.50 0.10
rot 135 107 7891 446.47 0.05 16164 312.08 5.61 18503 308.68 30.34
Average 1.00 1.00 0.03 1.87 0.85 1.53 3.0l 0.84 12.89
* Memory overflow precluded computation of these values.
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assignment of values to don’t cares, as well as the variable order. To make our results compatible with the results in [16], we
optimized each output of the multiple-output benchmark functions independently, and obtained the sum of the values over
all outputs. Thus, the number of nodes and APL in Table 1 are different from those of the SBDD. Two rounds of sifting are
performed in all experiments. The row labeled Average of ratios represents the normalized averages for Nodes, APL, and
Time assuming the values of “(a) Min Nodes” to be 1.00. The columns “(b) Min APL”, “(c) Liu [16]”, and “(d) sifting” of
this row contains the relative values to the results of “(a) Min Nodes”.

The heuristic method in [16] obtained BDDs with the exact minimum APLs in 5 out of 17 benchmark functions. How-
ever, for alu4, cm151a, and cm85a, the algorithm in [16] obtained BDDs with much larger APLs than the exact minimum
APLs. On the other hand, our heuristic method in Section 4.4 obtained BDDs with the exact minimum APLs in 11 out of
17 benchmark functions. For five of the remaining functions, the APLs in the column labeled “(d) sifting” are smaller than
or equal to the APLs in “(c) Liu [16]”. For cm162a, our sifting algorithm obtained BDDs with slightly larger APLs than the
exact minimum APLs.

An exhaustive search algorithm finds the minimum APLs for the functions with up to 14 inputs within a reasonable
computation time. Meanwhile, our exact minimization algorithm in Section 4.3 found the minimum APL for functions with
25 inputs (vg2) within a reasonable computation time.

Table 2 shows the results for larger MCNC benchmarks and the effectiveness of the initial variable order using the Walsh
spectrum. In this table, we used SBDDs with complemented edges for multiple-output functions. In Table 2, the column
“classical sifting” shows the number of nodes and APL for BDDs obtained by the sifting algorithm [23] which minimizes
the number of nodes in BDD. The column “Without Walsh spectrum” shows the results of our sifting algorithm, which
minimizes the APL, where the initial variable orders are the variable orders of BDDs obtained by “classical sifting”. And,
the column “With Walsh spectrum” shows the results of our sifting algorithm, where the initial variable orders were obtained
using Walsh spectrum shown in Section 4.5. The column “Coef. Time” denotes the CPU time needed to calculate the values
of first-order Walsh spectral coefficients Ri, in seconds. Unfortunately, for C2670, C5315, and C7552, BDDs with the initial
variable orders could not be constructed due to memory overflow. The row labeled Average represents average of Time and
normalized averages of Nodes and APL assuming the values of “classical sifting” to be 1.00. The columns “Without Walsh
spectrum” and “With Walsh spectrum” show the relative values to the results of “classical sifting”.

For some benchmark functions, for example, C1908, frg2, and rot, the APLs are reduced drastically. For C7552, the
number of nodes is reduced as a byproduct of the APL minimization. However, for most functions, the number of nodes
is increased by the APL minimization. The comparison of “Without Walsh spectrum” and “With Walsh spectrum” shows
the effectiveness of the initial variable order using Walsh spectrum. For 8 out of 19 benchmark functions, the APLs in the
column “With Walsh spectrum” are smaller than the APLs in “Without Walsh spectrum”. The computation time to calculate
the values of Ri is short.

However, for most functions, the computation times of sifting for “With Walsh spectrum” are significantly longer than
that for “Without Walsh spectrum” because the number of nodes in BDD with initial variable order computed using Walsh
spectrum is large. When the number of nodes in the BDD is large, swapping one pair of adjacent variables takes a longer
time because the time needed for the swap is roughly proportional to the number of nodes present on the given levels in the
BDD.

Tables 1 and 2 show that the proposed heuristic minimization minimizes the APL in short computation time. For small
benchmark functions in Table 1, the heuristic minimization could obtain BDDs with near-minimum APLs. For large bench-
mark functions in Table 2, the heuristic algorithm reduces APLs to 84% on the average.

6.2 Multi-Valued Case

There are no standard benchmark functions for multi-valued logic. Thus, by pairing binary variables of 2-valued benchmark
functions, we obtained 4-valued input 2-valued output functions. Table 3 compares the number of nodes and the APLs of the
BDDs and the MDDs optimized using four algorithms: (a) exact minimization of the APL for BDDs; (b) exact minimization
of the number of nodes for MDDs; (c) exact minimization of the APL for MDDs; and (d) the heuristic APL minimization
algorithm for MDDs. Columns “BDD”, “Min Nodes”, “Min APL”, and “pair-sifting” denote the exact APL minimization
algorithm in Section 4.3, the exact paired ordering algorithm for node minimization, the exact paired ordering algorithm for
APL minimization in Section 5.1, and the pair-sifting algorithm in Section 5.2, respectively. The symbol ‘*’ in this table
denotes that the results could not be obtained because of memory overflow. The bottom row labeled Average represents
normalized averages of Nodes, APL, and Time for all functions except for 4 functions (cordic, cm150a, mux, pcle), where
the values of “BDD” are set to 1.00. The SBDDs and SMDDs in this table do not use complemented edges. Note that the
values (Nodes, APL, Time) of BDDs in this table are different from the values in Table 1, because in this table, SBDDs
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Table 3: Comparison of APLs for SBDDs and SMDDs

BDD MDD
Min Nodes Min APL pair-sifting

Name Nodes APL Time Nodes APL Time Nodes APL Time Nodes APL Time
5xp1 68 32.00 0.01 37 20.69 0.01 37 20.69 0.02 37 20.69 0.01
alu4 462 40.70 47.96 247 27.49 77.46 290 23.26 101.64 393 27.00 0.01
b12 66 22.77 2.26 39 22.84 387.21 50 16.83 5.11 55 19.00 0.01
con1 18 6.31 0.01 11 4.63 0.01 11 4.06 0.01 13 5.69 0.01
cordic 94 9.46 3996 * * * 43 5.21 3587 70 5.81 0.01
sao2 102 10.64 0.12 46 9.98 0.21 58 6.57 0.07 55 6.79 0.01
misex1 46 22.84 0.02 22 15.50 0.01 28 12.75 0.01 30 15.41 0.01
cm150a 32 3.50 5972 * * * 13 2.25 19509 26 2.47 0.01
cm151a 32 6.00 0.47 16 5.50 0.13 22 4.00 0.80 22 4.00 0.01
cm162a 38 11.70 0.86 19 8.73 0.55 27 8.44 0.56 23 8.66 0.01
cm163a 40 11.70 1.98 19 12.25 19.60 22 8.16 1.11 19 8.16 0.01
cm85a 37 7.72 0.08 15 6.28 0.08 16 5.38 0.16 25 5.84 0.01
mux 32 3.50 6334 * * * 13 2.25 13811 26 2.47 0.01
z4ml 26 16.38 0.01 10 9.13 0.01 10 9.13 0.01 10 9.13 0.01
f51m 76 28.02 0.03 39 18.81 0.02 41 17.38 0.03 41 18.81 0.01
pcle 83 22.50 34.46 * * * 50 16.50 29.56 48 20.92 0.01
Average 1.00 1.00 1.00 0.50 0.79 15.89 0.59 0.64 1.28 0.63 0.70 0.34
* Memory overflow precluded computation of these values.



EXACT AND HEURISTIC MINIMIZATION OF THE APL IN DECISION DIAGRAMS 453

Table 4: Minimization of APL for SMDDs for larger functions

Name Node pair-sifting [24] APL pair-sifting
Nodes APL Time Nodes APL Time

C432 617 59.84 0.03 721 58.75 0.15
C499 13541 407.23 1.52 16397 339.73 9.23
C880 3025 118.99 0.30 34730 107.89 9.35
C1908 4390 167.42 0.55 15287 124.36 1.49
C2670 2336 276.19 0.31 3945 260.65 1.99
C3540 22519 155.06 7.33 24241 157.57 19.16
C5315 1947 398.53 0.23 2258 393.20 0.49
C7552 2292 420.69 0.45 2236 431.77 1.86
apex3 628 143.66 0.03 694 96.72 0.06
apex7 200 99.82 0.02 257 73.29 0.01
b9 126 55.90 0.01 173 51.66 0.02
dalu 523 70.55 0.03 644 42.93 0.13
des 2685 934.38 0.55 2994 911.44 1.04
duke2 272 65.99 0.02 288 51.50 0.01
e64 96 96.67 0.01 993 86.44 0.03
ex4 420 46.00 0.02 482 39.45 0.05
frg2 1179 544.34 0.10 1457 260.11 0.20
k2 1055 168.17 0.05 912 108.42 0.11
rot 5615 393.57 1.29 14898 284.22 9.52
Average 1.00 1.00 1.00 2.40 0.83 4.66

without complemented edges are used.
The pair-sifting algorithm obtained MDDs with the exact minimum APL for 4 functions. On the average, the pair-

sifting algorithm reduced the APL to 70% of “BDD”. For con1, the pair-sifting algorithm obtained larger APL than that of
“Min Nodes” due to heuristic pairing algorithm. However, this algorithm can obtain a smaller APL and fewer nodes than
those of the corresponding BDD. Although the exact paired ordering algorithms for nodes and APL can reduce both nodes
and APL drastically, they are time-consuming. On the other hand, the pair-sifting algorithm quickly reduces both Nodes
and APL.

Table 4 shows the results for larger MCNC benchmark functions. Similarly, we obtained 4-valued input 2-valued output
functions by pairing binary variables. Column “Node pair-sifting [24]” denotes the heuristic paired ordering algorithm for
the node minimization method proposed in [24]. The number of nodes in an MDD obtained by the paired ordering algorithm
for node minimization is smaller than or equal to the corresponding BDD [24]. However, since the MDDs in this table do
not use the complemented edges, some MDDs are larger than the BDDs with complemented edges in Table 2. The bottom
row labeled Average represents normalized averages of Nodes, APL, and Time assuming the values of “Node pair-sifting
[24]” to be 1.00.

For these benchmark functions, the pair-sifting algorithm reduced the APL to 83% of “Node pair-sifting [24]”, on
average. Especially, for frg2, the APL was reduced to 48% of “Node pair-sifting [24]”. The pair-sifting algorithm cannot
always find an MDD with the minimum APL, because it is a heuristic algorithm. For C3540 and C7552, the APLs are
slightly larger than that in “Node pair-sifting [24]”. However, Tables 2 and 4 show that the pair-sifting algorithm can find
an MDD with smaller APL than APL of corresponding BDD.

7 CONCLUSION AND COMMENTS

We have proposed an exact and a heuristic algorithm for the minimization of the APL in BDDs and MDDs. The experimental
results using MCNC benchmark functions show that: 1) The exact minimization algorithm finds BDDs with the minimum
APL for the function with up to 25 input variables within a reasonable computation time. 2) Using the node and edge
traversing probabilities to compute and update the APLs after the swap of two adjacent variables, the proposed sifting
algorithm can heuristically minimize the APLs as fast as classical sifting, which minimizes the number of nodes. 3) Using
an initial variable order computed using Walsh spectral coefficients increases the quality of the results of APL minimization
algorithms. However, in some cases the initial variable order leads to BDDs with a large number of nodes, which slows down



454 NAGAYAMA, et al.

APL minimization. 4) MDDs produced by pairing binary variables have smaller APL and fewer nodes than corresponding
BDDs.
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APPENDIX

Proof for Lemma 2.1. We prove only the first statement; the proof for the second statement is similar. Consider a node v.
Any path that includes an incoming edge to v includes v. Conversely, any path that includes v includes an incoming edge
to v. It follows that any assignment of values to the variables that corresponds to a path through v contributes to the node
traversing probability of v an amount that is identical to the amount contributed to the edge traversing probability of an
incoming edge to v. It follows that the node traversing probability of v is equal to the sum of edge traversing probabilities
of all incoming edges to v. 2

Proof for Theorem 2.1. We prove only the first statement; the proof for the second statement is similar. From Definition 2.6,
we have

ETP(e) = ∑
p∈SP(e)

PP(p), (1)
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where SP(e) is a set of paths including the edge e. We prove the following

APL =
Ne

∑
i=1

ET P(ei), (2)

where Ne denotes the number of edges in a DD. From (1), (2) can be transformed as follows:

APL =
Ne

∑
i=1

ET P(ei)

=
Ne

∑
i=1

∑
p∈SP(ei)

PP(p) (3)

From Definition 2.4, we have

APL =
N

∑
i=1

PP(pi)× li

=
N

∑
i=1

li

∑
j=1

PP(pi) (4)

Although (3) and (4) use different computational approaches, they obviously compute the same value. 2

Proof for Lemma 3.1. An SMDD for F = ( f0, f1, . . . , fm−1) is traversed from a root node to a terminal node m times to
evaluate multiple-output function F . Since mU root nodes are located above or in level i, mU traversals via edges in Cut(i)
are performed while evaluating the multiple-output function. Therefore, we have ET P(Cut(i)) = mU . 2

Proof for Lemma 3.2. From Lemma 2.1, the following relation holds:

ETP(Cut ′(i)) = ∑
v∈Vc

NT P(v),

where Vc denotes a set of non-terminal nodes representing the cofactors with respect to Xupper. The probability of the
occurrence of the cofactor depends only on the function and not the order of Xupper. Since Cut ′(i) does not include the
edges to terminal nodes, the upper bound of mU on ci follows from Lemma 3.1. 2

Proof for Theorem 3.1. All nodes representing cofactors with respect to the variables in Xupper and mL root nodes are
situated below or in level i+1. Thus, L includes the node traversing probabilities of these nodes. 2

Proof for Theorem 3.2. Let L be the sum of the node traversing probabilities of the non-terminal nodes below or in level
i+1. From Theorem 2.1, we have

APL = U +L.

Then, from Theorem 3.1, for any permutation of Xlower,

APL ≥U +ETP(Cut ′(i))+mL.

2

Proof for Theorem 4.1. The variable swap of level i and level i+1 does not influence the graph structure except for levels
i and i+1 because of the locality of the swap operation. Thus, it is clear that U remains unchanged. From Lemma 2.1, L is
obtained by the sum of ETP(Cut ′(i+1)) and ETP(Elower), where

Cut ′(i+1) = {e | e ∈Cut(i+1), e is incident to a non-terminal node},

Elower = {e | e is an edge situated below or in level i+2},

ETP(Cut ′(i+1)) = ∑
e∈Cut′(i+1)

ETP(e),

ETP(Elower) = ∑
e∈Elower

ET P(e).
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By Lemma 3.2, ET P(Cut ′(i+1)) is an invariant. ET P(Elower) remains unchanged because of the invariance of ETP(Cut ′(i+
1)) and the locality of the swap operation. Therefore, L also remains unchanged. 2

Proof for Theorem 5.1. The number of different permutations of binary variables X is n!. Since from Definition 5.1, the
binary variables X are partitioned into the unordered sets {X1},{X2}, . . . ,{Xu}, the order of binary variables in each {Xi}
is not important. The number of different permutations of two binary variables in each {Xi} is 2. Therefore, we have the
theorem. 2


